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This paper proposes a stack of three Byzantine-resistant protocols aimed to be used in practical
distributed systems: multi-valued consensus, vector consensus and atomic broadcast. These protocols
are designed as successive transformations from one to another. The first protocol, multi-valued
consensus, isimplemented on top of a randomized binary consensus and areliable broadcast protocol.
The protocols share a set of important structural properties. First, they do not use digital signatures
constructed with public-key cryptography, a well-known performance bottleneck in this kind of
protocols. Second, they aretime-free, i.e. they make no synchrony assumptions, sincethese assumptions
are often vulnerable to subtle but effective attacks. Third, they are completely decentralized, thus
avoiding the cost of detecting corrupt leaders. Fourth, they have optimal resilience, i.e. they toleratethe
failureof f = |(n — 1)/3] out of atotal of n processes. In terms of time complexity, the multi-valued
consensus protocol terminatesin a constant expected number of rounds, whilethe vector consensusand
atomic broadcast protocolshave O (f) complexity. Thepaper also provestheequivalencebetween multi-
valued consensus and atomic broadcast in the Byzantine failure model without signatures. A similar
proof is given for the equivalence between multi-valued consensus and vector consensus. These two
results have theoretical relevance since they show once more that consensusis a fundamental problem
in distributed systems.
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INTRODUCTION

public-key cryptography. This CPU-time issue is frequently

Distributed protocols capable of tolerating Byzantine faults
have been studied for more than two decades [1, 2, 3,
4]. Recently, interest in these protocols has gained a new
momentum under the designation of intrusion tolerance[5].
The basic ideais that the security concepts of attack, intrusion
and vulnerability can be considered asfaults, more precisely as
arbitrary faults, also called Byzantine faults. A consequence
of this assertion is that Byzantine-resistant protocols can
be important building blocks for the construction of secure
systems.

Byzantine-resistant (or intrusion-tolerant) protocols usually
have higher time and message complexities than crash-
tolerant protocols do. They are adso more CPU-time
demanding since they must use cryptography,! and often

1Here we are talking about practical systems. Theoretically we can assume
private channels connecting the processes, therefore cryptography is not an
absolute requirement.

dismissed sincethe processing power of computersisconstantly
increasing. However, new classes of computing environments
are appearing in which resources are scarce, e.g. embedded
systems. Thisis an important motivation for the design of less
CPU-time consuming intrusion-tolerant protocols. Moreover,
public-key cryptography operations can be an important
bottleneck for the performance of intrusion-tolerant systems
even in more powerful hardware. Castro and Liskov designed
an intrusion-tolerant NFS system which performs on average
only 3% slower than standard NFS, in part due to avoiding the
use of signatures based on public-key cryptography [6].

An argument of this paper is that the design of efficient
Byzantine-resistant protocolsis crucia for the implementation
of practica intrusion-tolerant systems, therefore these
protocols have to avoid as much as possible the use of public-
key cryptography. Moreover, practical intrusion-tolerant
systems require protocols with other characteristics, like strict
asynchrony, optimal resilience and low time complexity. The
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FIGURE 1. Protocol architecture.

paper provides a modular and consistent family of protocols
with these properties.

Paper results The paper presents a stack of three message-
passing Byzantine-resistant protocols. multi-valued consensus,
vector consensus and atomic broadcast (see Figure 1).
Consensus is a distributed systems problem with both
theoretical and practical interest. The problem canbestatedthis
way: how doesaset of distributed processes achieve agreement
on a value despite a number of process failures? The paper

implements two flavors of consensus. multi-valued consensus

that makesagreement on valueswith an arbitrary sizeand vector
consensushat makes agreement on a vector with the values
proposed by severa of the processes. An atomic broadcast
protocol is a communication protocol that delivers the same
messages to all processes in the same order. Atomic broadcast
is, for instance, the main component of fault-tolerant systems
based on the state-machine approach, with both crash [7] and
Byzantine faults[6, 8]. The protocolsin the paper do not solve
consensus from scratch but are built on top of a randomized
binary consensus protocol (e.g. [9, 10]) and areliable broadcast
protocol (e.g. [9])—see Figure 1.

The problem of consensus has been studied with different
system models, such as the synchronous and the asynchronous
time models, the crash and the arbitrary failure models, and
in message-passing and shared-memory systems. In asyn-
chronous systems, consensus has been shown to be constrained
by the FLP impossibility result, which says that it is impos-
sible to solve consensus deterministically in a completely
asynchronous system [11]. Consequently, various researchers
have proposed ways to circumvent this limitation:? using
randomization [3, 4, 9, 10, 12, 13, 14], making synchrony or
timing assumptions on the behavior of the system [15, 16, 17],
using failure detectors [18, 19, 20, 21, 22] or ordering ora-
cles[23], using wormholes[24, 25, 26] or imposing conditions
on inputs [27, 28]. Some common misunderstandings about
consensus and FLP are discussed in [29].

2We use the expression to circumvent FLPsince it is common in the
literature. However, what the expression means is that the model for which
FLP was stated is modified so that FL P no longer applies.

The protocols presented in the paper are intended to be
practica. Their modularity allows a system designer to
implement only the protocols he/she needs, instead of the full
stack. Moreover, the protocols share the following set of
important structural properties:

e Signature free The protocols do not use signatures
based on public-key cryptography.

e AsynchronyThe protocolsare asynchronous, i.e. thereare
no synchrony assumptions whatsoever.

e Decentralization Decisions are taken in a decentralized
way, i.e. there are no coordinators, leaders or token-
holders.

e OptimalresilienceTheprotocolstolerate f = |(n—1)/3]
faulty processes out of atotal of n processes.

A stack of protocolswith this combination of characteristics
isnovel, to the best of our knowledge. Wearguethat all of them
are important if the protocols are to be used in practice. The
argument for avoiding public-key cryptography (first property)
has already been done above, so let us discuss the importance
of the other three properties.

Many protocols in the literature are designated
‘asynchronous’ but make synchrony assumptions, either
explicitly [15, 16, 17] or contained in the unreliable failure
detector abstraction [19, 20, 21, 22]. These assumptions can
make the protocols vulnerable to subtle but effective attacksin
the domain of time, something that cannot happen in time-free
systems. Some discussion about these kinds of attacks and the
corresponding vulnerabilities can befound in [6, 14]. Our pro-
tocols are time-free or strictly asynchronous (second property)
but circumvent FLP by being built on top of a randomized
binary consensus protocol. Randomized protocols have a
probability of satisfying their properties that increase with the
number of rounds executed. The protocols in the paper satisfy
deterministically all their properties except termination; that
nevertheless happens with probability 1.

The third property—decentralization—is important because
it eludes the need for detecting faulty coordinators, leaders
or token-holders. This detection usually has a price in
terms of time and messages transmitted. Moreover, even a
common failure like a process crash cannot be detected in a
strictly asynchronous system, since there are no bounds on the
communication delays.

The resilienceof a protocol can be defined as the maximum
number of faults in the presence of which the protocol
still behaves according to its specification. The optimal
resilience for asynchronous consensus has been shown to be
L(n — 1)/3] [13] and we prove that atomic broadcast is an
equivalent problem, so the optimal resilience is the same
(this has aready been claimed by [13, 30, 31]). Optimal
resilience is an important property because the need for
additional processes to tolerate the same number of faults
involves a cost in terms of additional resources (e.g. additional
hardware).
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The evaluation of a distributed protocol is usually made in
terms of time and message complexities, so we evaluate the
protocols in terms of both. In asynchronous systems, time
complexity is usually measured in terms of maximum number
of asynchronous roundsAn asynchronous round involves a
process sending amessage and receiving one or more messages
sent by the other processes. For randomized protocols, the

metric isusually the expected number of asynchronous rounds

Our multi-valued consensus protocol has time complexity
0 (1), i.e. it has a constant expected number of rounds. The
complexities of the vector consensus and the atomic broadcast
protocols are both O(f), athough they are reduced to O (1)
when all processes are correct. These complexities are at |east
as good as previous works, except for one vector consensus
that manages to have time complexity O(1) at the cost of a
significatively higher message complexity [32]. The message

complexities, measured in expected number of messages sent

are usualy higher than those obtained by protocols that use
signatures, so there is atradeoff involved.

The paper has a further contribution. Atomic broadcast
has been shown to be equivalent to multi-valued consensus
in systems prone to crash faults [18, 30]. For systems prone
to Byzantine faults with signatures there is also a proof [31].
Here we prove this equivalence without the requirement
of signatures. Moreover, we also prove that multi-valued
consensus and vector consensus are equivalent in the same
system model.

Paper organization. The paper is organized as follows.
The following section defines the system model and the
two components used by our protocols. reliable broadcast
and binary consensus. Section 3 presents our multi-valued
consensus protocol and proves its correctness.  Sections 4
and 5 present respectively, the vector consensus and atomic
broadcast protocols. Section 6 proves the equivalence multi-
valued consensus/atomic broadcast, and Section 7 proves
the equivalence multi-valued consensus/vector consensus.
Section 8 assesses the performance of the protocols. Section 9
discusses some related work and Section 10 concludes the

paper.

2. DEFINITIONS
2.1. System model

The system is composed of a set of n processes P =
{p1, p2, ..., pn}. A processissaid to be correctif it does not
fail during the execution of the protocal, i.e. if it follows the
protocol. We assume that at most f = [(n — 1)/3] processes
can fail and we call these processes corrupt Thesefailures can
be Byzantine, meaning that processes can stop, omit messages,
send incorrect messages, send several messages with the same
identifier etc. Additionally, corrupt processes can pursue their
goa of breaking the properties of the protocol alone or in
collusion with other corrupt processes.

Processes are fully-connected by reliable channelsvith two
properties: if the sender and the recipient of amessage are both
correct then (i) the message is eventually received and (ii) the
message is not modified in the channel .3

The system is asynchronous, which means that there are no
bounds on the processing times or communication delays.

2.2. Reliable broadcast

A reliable broadcast protocol ensures essentially that all correct
processes deliver the same messages, and that messages
broadcast by correct processes are delivered. Moreover, it
ensures that no different messages with the same identifier are
delivered. Thisidentifier includes the typical informationin a
protocol header: protocol type, sender, broadcast channel and
sequence number. An example of an asynchronous Byzantine-
resistant reliable broadcast protocol is the one proposed by
Bracha [9]. We consider that the reliable broadcast is
executed by calling thefunction R_Br oadcast (M) (see, e.g.
Algorithm 1 below).

Formally, a reliable broadcast protocol can be defined in
terms of the following properties [30, 31]:

e RB1 Validity:if acorrect process broadcasts amessage M,
then some correct process eventually delivers M.

e RB2 Agreementif a correct process delivers a message
M, then al correct processes eventually deliver M.

o RB3 Integrity:for any identifier ID, every correct process
p delivers at most one message M with identifier ID, and
if sende(M) is correct then M was previously broadcast
by sende(M).

The predicate sende¢M) gives the field of the message
header that identifies its sender. We consider that the sender
also delivers the messages it broadcasts.

Note that property RB3 prevents the behavior we discussed
above: it prevents a correct process from delivering two mes-
sages with the same ID broadcast by the same malicious pro-
cess. Thisisimportant for the protocol sin this paper, aswewill
see later. However, it has only to be satisfied during the execu-
tion of the protocol that uses reliable broadcast, not forever.

2.3. Binary consensus

A binary consensus protocol performs consensus on a binary
valueb € {0, 1}. Theproblem can beformally definedin terms
of three properties:

e BC1 Validity: if all correct processes propose the same
value b, then any correct process that decides, decides b.

3In practice, reliablechannelshaveto beimplemented using retransmissions
and cryptography, e.g. with message authentication codes (MACs) that are
based on symmetric cryptography [33]. Processes have to share symmetric
keysin order to use MACs. In the paper we assume these keys are distributed
before the protocol is executed. In practice, this can be solved using key
distribution protocols availablein theliterature, but theissueisout of the scope

of the paper.
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ALGORITHM 1.
process p;).

Multi-valued consensus protocol (for

Function M_V_Consensus (v;, cid)
Initialization:
1: INIT_delivered; < @;
2. activatetask (T1,T2);

{INIT messages delivered}

Task T1:
: R _Broadcast ((INIT,v;,cid,i));
4: wait until (at least (n — f) INIT messages have been
delivered);
5. V. if ((INIT, v;, cid, j) has been delivered) then V;[j]
Vv dseV[j] «L1;
if 3% #,(Vy) > (n —2f)) then
W; <V,
else
w; < L;
10. R _Broadcast ((VECT, w;, V;,cid,i));
11: wait until (at least (n — f) valid messages (VECT, w;,
V;, cid, j) have been delivered),
12: v;: if ((VECT, wj, V}, cid, j) has been delivered) then
Wi[j] < w;; else W;[j] < L,
13; if (Vj,k W;[j] # W;[k] = W;[j] =L or W;[k] = 1) and
(Fw: #,(W;) > (n — 2f)) then

w

© ® N @

14 by <1,
15 else
16 b <0

17: ¢; < B_Consensus(b;, cid);

18: if (¢; = 0) then

9.  return L;

20: wait until (at least (n — 2f) valid messages (VECT, v;,
V;, cid, j) with v; = v have been delivered);

21 return v;

Task T2:
22: when m; = (INIT, v}, cid, j) isdelivered do
23 INIT_delivered; < INIT_delivered; | {m;};

e BC2 Agreement:no two correct processes decide
differently.

e BC3 Termination: every correct process eventualy
decides.

Thisdefinition hastwoimmediate consequencesthat we state
and prove for later reference in the paper.

THEOREM 1. If a correct process decidebs, thenb was
proposed by some process.

Proof. If all processes propose the same value b, then BC1
guarantees that thisis the value decided. If processes propose
different valuesthen the val ue decided must have been proposed
since there are only two possible values: {0, 1}. d

THEOREM 2. If a value b is proposed only by corrupt
processes, then no correct process that decides, dekides

Proof. If avalue b is proposed only by corrupt processes then
all correct processes proposed —b since b € {0, 1}. Therefore,
BCL1 guarantees that any correct process that decides, decides
—b, i.e. does not decide b. O

Besides satisfying this definition, the binary consensus
protocol to be used in the stack has to be compatible
with the structural properties given in the introduction: it
cannot use public-key signatures, has to be asynchronous,
has to take decisions in a decentralized way and has to have
optimal resilience. Examples of protocols that satisfy these
requirements are [9, 10]. Appendix A presents an efficient
protocol that also satisfies these requirements, although it does
not avoid public-key cryptography entirely (it uses a variation
of the Diffie-Hellman problem).

Throughout the paper we consider that the binary consensus
protocol isexecuted by calling thefunction B_Consensus (b,
bcid), where b is the binary value proposed and bcid the
protocol execution identifier.

3. MULTI-VALUED CONSENSUS

Thefirst protocol of the stack proposed in the paper isamulti-
valued consensus. The definition of the problem is similar to
the binary consensus, except that processes can propose values
with arbitrary length v € V (V is the domain of values that
can be proposed). The protocol can decide one of the proposed
values or adefault value L ¢ V. The definition is:

e MVC1 Validity 1.If all correct processes propose the same
value v, then any correct process that decides, decides v.

e MVC2 Validity 2If acorrect processdecidesv, then v was
proposed by some processor v = .

e MVC3 Validity 3.If avalue v is proposed only by corrupt
processes, then no correct process that decides, decides v.

e MVC4 AgreementNo two correct processes decide
differently.

e MVC5 Termination.Every correct process eventually
decides.

The problem of multi-valued consensus is often stated in
terms of the properties MVC4, MVC5 and either MVCL1 or
MVC2 (eg. MVCL1 in [15, 34, 35] and MVC2 in [20, 22,
21]). We define consensus using all three validity properties
following the definition used in the original Byzantine Generals
paper [2].* Moreover, a consensus protocol that satisfies only
MVC1 or MVC2 has limited interest in practice. Property
MYV C1 doesnot say anything about which valueisdecided when
the correct processes do not propose the same value. Property
MV C2 does not impose that the value decided is proposed

4The origina definition is in the context of the ‘Byzantine Generals
metaphor used in the paper: ‘(1) All loyal generals decide upon the same
plan of action; (2) A small number of traitors cannot cause the loyal generals
to adopt abad plan.’ [2].
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by a correct process. Notice that we proved, respectively in
Theorems 1 and 2, that for binary consensus, Validity 1 implies
Validity 2 and Validity 3.

A word is due about why the other papers do not use a
definition more similar to ours. The reason is probably that
the interest of these other papers in consensus is theoretical.
These papers are mostly interested in proving that consensus
can be solved under a certain model, e.g. in the presence of
partial synchrony [15], with aquietnessailure detector [34] or
withamutenessailuredetector [20]. Our interest on Byzantine
consensus, onthecontrary, follows, for example, Guerraoui and
Schiper that aim to solve practical problems using this type of
protocol, albeit with a crash failure model in their case [36].

3.1. Theprotocoal

The protocol is presented in Algorithm 1. Local variables
are designated by lowercase letters with a subscript indicating
the process to which they belong: w;, b;, ¢; in process
p;. Vectors have one entry per process in P and are
designated by an uppercase letter, e.g. vector V; has entries
V;[1], V;[2], ..., V;[n]. Function #,(V) counts the number of
occurrences of x in vector V. The maximum number of faulty
processes is a function of the total number of processes n:
f = |(n —1)/3]. The protocol uses two types of messages:
INIT and VECT. The content of messagesisrepresented inside
angles: {...). A set called INIT_delivered; isused to store the
received INIT messages. A call toreturncausesthetermination
of all the protocol’s tasks. The value returned is the result of
the protocal, i.e. the decided value.

Function M V_Consensus is caled with two arguments:
the value proposed by the process (v;) and the consensus
identifier (cid). Thereisan initiaization and tasks T1 and T2
are started concurrently (lines 1 and 2). Task T1 does most of
the work, while task T2 simply receives INIT messages and
storesthemin INIT_ddlivered; (lines 22 and 23).

Task T1 begins by reliably broadcasting an INIT message
with the valuev; proposed by processp; (line 3). Theidentifier
of the messageincludesthe messagetype (INIT), the consensus
(cid) and sender identifiers (i). Then, the task waits for
the reception of (n — f) INIT messages (including its own)
and stores the proposed values in vector V; (lines 4 and 5).
The reliable broadcast protocol guarantees that two correct
processes p; and p; do not receive different proposals from the
same process (see Section 2.2). However, V; can be different
fromV; sincethefirst (n — f) INIT messages received by the
two processes do not have to be the same.

If al correct processes propose the same value v then all
correct processesreceive at least (n — 2f) INIT messageswith
v. If aprocessreceivesthis number of messageswithavauew,
then it selectsthis value (lines 6 and 7) and reliably broadcasts
it to all processes together with the vector V; that justifies
the selection (line 10). Otherwise, it selects the default value
1, which it also broadcasts. After broadcasting this message

(VECT), the process waitsfor (n — f) valid VECT messages,
i.e. messages known to have a vector with rea proposals and
a value substantiated by those proposals. The identifier of a
message VECT includes the protocol type (VECT) and also
the consensus (cid) and sender identifiers (i).

DEFINITION 1. A messag¢VECT, w;, V;, cid, j) is said to be
valid at process piff:

o Vi, V;[K] =L or there is a messag@NIT, v, cid, K €
INIT_delivered so that V;[K] = v «
o w; #FL & #,,(Vj) = (n —2f)

If the process does not receive two VECT messages with
different values w # w’, and it receives at least (n — 2f)
messages with w, it proposes 1 for the binary consensus,
otherwise it proposes O (lines 13-16). If the binary consensus
decides O, the vector consensus protocol decides on the default
value L (lines 17-19).

If the binary consensus decides 1, the process waits until
it received (n — 2f) vaid VECT messages with the same
value v (line 20). The process does not wait until it received
(n — 2f) valid VECT messages with the same valuein line 20
but rather until it received cumulatively these messages since
the beginning of the protocol execution (some of them were
received in line 11). When these messages are received, the
protocol returnsv (line 21). The protocol can be surethat there
canonly beonevaluev for which acorrect process can consider
(n — 2f) VECT messages to be valid, or two different correct
processes might decide different values. We show that thisis
truein the proof of Theorem 6.

3.2. Correctness proof

The protocol in Algorithm 1 is correct if it satisfies properties
MVC1-MVC5. A preliminary result is given by the following
lemma:

LeEmMA 1. If a messageVECT, w, V;, cid, i) is reliably
broadcast by a correct process, ghen eventually all correct
processes will consider it valid.

Proof. The INIT messages are reliably broadcast (line 3).
Conseguently, all correct processes eventually deliver the same
INIT messages (propertiesRB1-RB3in Section 2.2). A correct
processonly putsinV; valuesv; it received in INIT messages
(line 5). Therefore, for every value v in a VECT message
sent by a correct process, there is an INIT message that is
eventually delivered by all correct processes. Additionaly,
a correct process aways sends VECT messages with at least
(n — f) values (lines 4, 5 and 10). This proves the lemma,
attending to the definition of valid message. O

THEOREM 3. (Vaidity 1). Ifall correct processes propose the
same value, then any correct process that decides, decides
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Proof. If al correct processes propose the same value v, then
all processesdeliver at least (n — 2 f) INIT messageswith v and
at most £ INIT messageswith v’ # v (at most f processes are
corrupt). Consequently, all correct processesmakew; = v, and
send thisvaluein aVECT message (lines 6-10). Moreover, al
correct processesdeliver atleast (n—2 f) valid VECT messages
inlinell (Lemmal). Novalid VECT messagecanhavew; # v
since at most f (corrupt) processes send INIT messages with
avauedifferent from v. Therefore, all correct processes make
b; = 1 (lines 13 and 14). All correct processes start a binary
consensusprotocol (line17) that decides 1 (property BC1). The
value decided is necessarily v (lines 18-21). O

THEOREM 4. (Validity 2). If a correct process decidesthen
v was proposed by some proceswoe L.
Proof. The proof is obtained with a trivial inspection of the
protocol. O

THEOREM 5. (Vaidity 3). If a value v is proposed only

by corrupt processes, then no correct process that decides,RB2).

decidewv.

Proof. The proof is by contradiction. If a correct process
decidesv thenitreceivedat least (n—2 f) valid VECT messages
withv. For aVECT messageto be valid there hasto be at |east
(n—2f) > f INIT messageswith v, but the theorem assumes
only corrupt processes proposed v: acontradiction. O

THEOREM 6. (Agreement). No two correct processes decide

differently.

Proof. All correct processes get the same decision from the
binary consensus protocol (property BC2). The proof can be
divided into two cases, depending on the value ¢; decided by
the binary consensus (line 17). Thefirst case, ¢; = 0, itstrivial:
al correct processes decide L (lines 18 and 19).

For thesecond case, ¢; = 1, theproof isby contradiction. Two
correct processes p; and py decide differently if: (i) py delivers
(n — 2f) valid VECT messages with the same value v; (line
20); and (ii) p2 delivers also (n — 2f) valid VECT messages
but with avalueva # v1.

The binary consensus protocol decided 1, so at least one
correct processp; (without lossof generality) proposed 1inline
17 (Theorem 2). p1 proposed 1, therefore the two conditions
in line 13 were satisfied. The second condition implies that p;
received at least (n — 2f) valid VECT messages with value v,
inline11. Thefirst conditionimpliesthat p; did not receiveany
valid VECT messagewith avauedifferent fromvy. Therefore,
py received:

e m1 valid VECT messageswith vy, and m1 > (n — 2f);

e movaid VECT messageswith L, andm1+mp > (n— f).

Now, the proof assumes p; received m3 = (n — 2f) valid
VECT messages with vo. However, there can be at most
one valid VECT message per process for an execution of the

consensus protocol, totalizing n, due to the reliable broadcast
protocol’s property RB3. Therefore, we have:
mi1+my+m3=<n
=>m0-f+nm-2f)<n
< n<3f

This is a contradiction since we assume that f =
Ll(m — 1)/3], what impliesthat n > 3f. O

THEOREM 7. (Termination). Every correct process eventu-

ally decides.

Proof. Correct processes decide when they execute lines 19 or
21. Theplacesof theprotocol inwhichwehaveto provethat the
protocol makes progress are the two executions of the reliable
broadcast protocol (lines 3 and 4 and 10 and 11), the execution
of the binary consensus protocol (line 17) and the reception of
VECT messagesin line 20.

The termination of the reliable broadcast protocol is
guaranteed by its Validity and Agreement properties (RB1,
All correct processes eventualy deliver (n — f)
INIT messages in line 4 because al correct processes reliably
broadcast an INIT message in line 3, and there are at most f
corrupt processes. Thisprovesthat the protocol makes progress
inlines3and 4. Thejustificationfor lines10and 11isidentical.
Thebinary consensus protocol executedinline 17 isguaranteed
to terminate by property BC3.

The protocol waits for the condition in line 20 only if
the binary consensus decides 1. If all correct processes had
proposed O for the binary consensus, then the process would
have decided O (lines 17-19). Therefore, at least one correct
process proposed 1 for the binary consensus. A correct process
proposes 1 for the binary consensusonly if it delivered (n — 2f)
valid VECT messages with the same value w (second condition
inlinel3andlines1land12). TheVECT messagesarereliably
broadcast, thereforeif acorrect process delivers (n — 2f) valid
VECT messages with w, then all correct processes eventually
do the same. Therefore no correct processblocksinline 20 and
all terminate. O

4. VECTOR CONSENSUS

Vector consensus makes agreement on a vector with a subset
of the values proposed, instead of a single value [20, 26]. In
systems where Byzantine faults can occur, the vector is useful,
e.g. to implement atomic broadcast, only if a majority of its
values were proposed by correct processes. Therefore, the
decided vector needs to have at least (2f + 1) values. This
problem is ultimately an adaptation for asynchronous systems
of the classical problem of interactive consistencgefined for
synchronous systems [1]. The difference between the two
problems is that interactive consistency makes agreement on
a vector with the values proposed by all correct processes,
while vector consensus guarantees only that the majority of the
values were proposed by correct processes. The reason for this
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ALGORITHM 2. Vector consensus protocol (for process p;).

Function Vect or _Consensus (v;, vcid)

11 <0 {round number}

2. R Broadcast ((VC_INIT,v;, vcid, i) );

3. repeat

4. waituntil (atleast (n— f +r;) VC_INIT messageshave
been delivered);

a

v if ((VC_INIT, v;, vcid, j) has been delivered) then
Wilj] <-v;; else Wi[j] < L;
V; <M _V_Consensus (W;, (vcid,r;));
r<r+1;
until (V; # 1);
return V;;

© ® N @

difference is that in asynchronous systems it is not possible to
ensure that the vector has the proposals of all correct processes,
since they can be arbitrarily delayed.
Vector consensus can be defined in terms of the following
properties:
e VC1 Vector validity: every correct process that decides,
decides on avector V of sizen:

o V. if p; is correct, then either V[i] is the value
proposed by p; or L;
e atleast (f + 1) elementsof V were proposed by correct

processes.
e VC2 Agreement: no two correct processes decide
differently.
e VC3 Termination: every correct process eventualy
decides.

4.1. The protocol

The protocol is implemented by the function
Vect or _Consensus presented in Algorithm 2.  The
arguments are the value proposed (v;) and the vector consensus
identifier (vcid). The protocol starts by reliably broadcasting a
VC_INIT message with the value proposed by the process (line
2). Thismessageisidentified by the protocol type (VC_INIT),
the vcid and the sender (i). Then, the protocol runs one or
more rounds until a decision is made (lines 3-8).

Thea gorithm begins each round by waiting for the reception
of (n — f + r;) VC_INIT messages (line 4). Notice that line
4 does not restart from scratch waiting for the (n — f + r;)
messages but rather waits until that number of messages has
cumulatively been received since the beginning of the execution
of the protocol. Next, the process builds a vector W; with the
valuesit received from other processes (at least (n — f) inround
0, (n — f+1)inround 1, ...) and proposes the vector for a
multi-valued consensus (lines 5 and 6). The identifier of the
multi-valued consensus is unique for each execution by using
a combination of vcid and the round number, r;.

VC_INIT is reliably broadcast, therefore al correct
processes will eventually receive the same VC_INIT messages
and buildidentical W vectors. When enough processes propose
thesameW vector for the multi-valued consensus, W isdecided
by this protocol and immediately after by the vector consensus
(lines 6-9).

4.2. Correctness proof
Theprotocol inAlgorithm 2iscorrect if it satisfiestheproperties

VC1,VC2and VC3.

THEOREM 8. (Vector validity). Every correct process that
decides, decides on a vectéof sizen: (i) V,,: if p; is correct,
then either V{] is the value proposed by; or L; and (ii) at

least (f+1) elements oV were proposed by correct processes.

Proof. The values proposed by each process are reliably
broadcast so all correct processes eventually deliver the
same vaues (lines 2 and 4). Any correct process cals
M V_Consensus in line 6 with a vector W; that satisfies
the two conditions of the theorem: (i) each entry j of the
vector contains either the value proposed by processp; or L;
and (ii) W; has a least (n — f) elements from which at least
(n—2f) > (f+1) wereproposed by correct processes (at most
f processes are corrupt). (n — 2f) must be greater or equal to
(f +1) because f = | (n — 1)/3]. The vaue decided by the
protocol (line 9) isthe val ue decided on the last execution of the
multi-valued consensus (line 6). Thisvalueisone of the values
proposed (property MVC2) and cannot have been proposed
only by corrupt processes (property MVC3). Therefore, the
value must have been proposed by at least one correct process
so the two conditions of the theorem are satisfied. O

THEOREM 9. (Agreement). No two correct processes decide

differently.

Proof. The value decided is equal to the value decided on the
| ast execution of the multi-valued consensus (lines5and 6). All
correct processes execute the same sequence of multi-vector
consensuses because the identifier of each execution includes
the round number (line 6). Therefore, the theorem is a trivial
consequence of the Agreement property MV C4 of the multi-
valued consensus. O

THEOREM 10. (Termination). Every correct process event-
ually decides.

Proof. All VC_INIT messages reliably broadcast by correct
processes are eventualy delivered by al correct processes
(properties RB1-RB3). Let p; be any correct process. Process
p; executes one or morecallsto M V_Consensus, and each
of these calls eventually terminates (property MV C5). Each
round of the loop, p; waits for one more VC_INIT message
(line 4) before engaging in the multi-valued consensus (line 6).
If p; does not leave theloop and terminates before, the latest by
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round r = f processp; and all other correct processes propose
for the multi-valued consensus a vector with the values from
al processes. Therefore, in that round all correct processes
propose the same vector, the multi-valued consensus decides
a value different from L (property MV C1) and the protocol
terminates (lines 8 and 9). O

5. ATOMIC BROADCAST

The problem of atomic broadcast, or total order reliable broad-
cast, istheproblem of delivering the same messagesin the same
order to al processes. The definition of the problem isequal to
the definition of reliable broadcast plus atotal order property:

e AB1 Validity: if a correct process broadcasts a message
M , then some correct process eventually delivers M.

e AB2 Agreementif a correct process delivers a message
M, then all correct processes eventually deliver M.

e AB3 Integrity: for any identifier ID, every correct process
p delivers at most one message M with identifier ID, and
if sende(M) is correct then M was previously broadcast
by sende(M).

e AB4 Total order: if two correct processes deliver two
messages M3 and M then both processes deliver the two
messages in the same order.

The identifier of an atomic broadcast message includes the
protocol type (A_MSG), the message number (num) and the
sender identifier (i).

The atomic broadcast protocol is implemented on top of
the vector consensus protocol. It could also be implemented
directly on top of the multi-valued consensus but, in the end,
thefunctionality of the vector consensus protocol would haveto
beimplementedinthe protocol anyway. Theapproachweuseis
more modular and elegant, besides providing thetwo protocols,
either of which may be useful for the system designer.

5.1. Theprotocol

The protocol is presented in Algorithm 3. It is inspired from
the algorithms of Chandra, Hadzilacos and Toueg [18, 30],
which assume crash faults. The initialization is carried out
before thefirst transmission or reception of amessage (lines 1—
4). A process atomically broadcasts a message by calling the
procedure A _Br oadcast , which simply reliably broadcasts
the message to all processes (lines 5 and 6). The message
number num guarantees that all messages broadcast by a
correct process are unique, since this number is unique. If a
malicious process triesto call R_Br oadcast twice with the
same message, then the reliable broadcast protocol deliversthe
message only once (see property RB3, Integrity).

The delivery of messages is handled by tasks T1 and T2.
When amessageisdelivered by thereliable broadcast protocol,
itisinsertedintheset R_delivered; (lines15and 16). Whenever
this set is not empty, the process tries to agree with the other
processeson thedelivery of the messagesinthe set (lines7-14).

ALGORITHM 3. Atomic broadcast protocol (for process p;).

Initialization:
1. R_delivered; < @;  {messages delivered by the reliable
broadcast protocol}
2. aid; < 0; {atomic broadcast identifier}
3 num; < 0; { message number}

4; activatetask (T1,T2);

When Procedure A Br oadcast (m)iscalled do

5: R_Broadcast ((A_MSG, num;, m, i) );
6. num; < num; + 1,

Task TL:

7. when (R_delivered; # @) do

8  H; < {hashesof the messagesin R_delivered;};

9 X; < Vector_Consensus (H;, ad;);

10:  wait until (all messageswithhashin f+21or morecells
in vector X; arein R_delivered;);

11:  A_deliver; < {all messageswith hashin f + 1 or more
cellsin vector X;};

12 aomically deliver messages in A_ddiver; in a
deterministic order;

13 R _delivered; < R_delivered; - A_deliver;;

14:  ad; < aid; +1;

Task T2:

15: when (A_MSG, num, m, i) is delivered by the reliable

broadcast protocol do

16 R_delivered; < R_delivered; |

{{A_MSG, num, m, i)};

The task starts by constructing a vector H; with a hash of
each of the messages in R_delivered; (line 8). A hash works
essentially as a fixed-length unique identifier of the message.
The objective is to compress the input supplied to the vector
consensus protocol, since the performance of this protocol
depends on the size of the value (e.g. the communication time
depends on the size of the messages). A hash is obtained using
ahash functiorh: defined by the following properties [33]:

e HF1 Compression maps an input x of arbitrary finite
length, to an output % (x) of fixed length.

e HF2 One way: for al pre-specified outputs, it is com-
putationally infeasible to find an input that hashes to that
output.

e HF3 Weak collision resistance:it is computationaly
infeasibleto find any second input that hasthe same output
as a specified input.®

5A guessing attack is expected to break the property HF3 in 2 hashing
operations, where m is the number of bits of the hash. A birthday attack can
be expected to break property HF4 in 2"/ 2 hashi ng operations. In apractical
setting, a hashing function with 160 bits like SHA-1 [37] can be considered
secure enough for our protocol. Nevertheless, we consider HF2, HF3 and HF4
to be assumptions.

THE COMPUTER JOURNAL VOL. 49 No. 1, 2006




90 M. CORREIA, N. F. NEVES AND P. VERISSIMO

e HF4 Strong collision resistanceit is computationally
infeasibleto find two different inputsthat hash to the same
output.

The value proposed by a process to the vector consensus
is itself a vector with the hashes of the messages, H; (lines
8 and 9). The vector consensus protocol decides on a vector
X; with at least (2f + 1) vectors H from different processes.
If the hash of a message appearsin at least (f + 1) of these
vectors, the process can be confident that the hash was proposed
by at least one correct process (there are at most f corrupt
processes); therefore there is no doubt that the message was
reliably broadcast to all processes. Thisis important because
amalicious process might provide a hash for which there was
no message to deliver. The process waits until all messages
that areto be delivered are put in R_delivered; (line 10), then it
storesthemin A_deliver; (line10). Finally, theprocessdelivers
the messagesin A_deliver; in apre-established order, removes
them from R_delivered;, and increments the atomic broadcast
identifier (lines 12-14).

5.2.  Correctness proof

The atomic broadcast protocol in Algorithm 3 is correct if it
satisfies the properties AB1, AB2, AB3 and AB4.

THEOREM 11. (Validity). If a correct process broadcasts a
message M, then some correct process eventually delivers M.

Proof. A correct process broadcasts a message M by calling
A Broadcast (m). Then, the atomic broadcast protocol adds
a header to the message and broadcasts it using the reliable
broadcast protocol (line 5). The properties of this reliable
broadcast protocol ensure that all correct processes eventually
receive M (properties RB1-RB3). This guarantees that there
is an execution of the lines 7-14 when all correct processes
put the hash of M in H (line 8), unless these processes already
delivered M inapreviousexecution of line12. Whenall correct
processes put the hash of M in H, the vector consensus decides
on a vector that includes at least f + 1 entries with that hash
(property VC1, Vector validity). Therefore, if the protocol does
not block, all correct processes deliver M (lines 10-12).

The protocol might block only in lines 9 and 10. It
does not block in line 9 because the vector consensus is
guaranteed to terminate (property VC3, Termination). Line
10 waits until all messages that have to be delivered by the
atomic broadcast protocol (those with f + 1 hashes in the
vector) are in R_delivered. A message with f + 1 hashesin
the vector must have been already delivered by the reliable
broadcast protocol to at least one correct process. Therefore,
this protocol will eventually deliver the message to all correct
processes (properties RB1-RB3), so no correct process blocks
inline 10. O

Proof. The theorem assumes that one correct process, say p;,
delivers M. Therefore: (i) thevector consensusinline9 decides
on avector with at least f + 1 hashesof M; and (ii) thereliable
broadcast protocol delivers M top;; thereforeit delivers M toall
correct processes (properties RB1-RB3). All correct processes
get the same results from the vector consensus so all eventually
deliver M. O

THEOREM 13. (Integrity). For any message M, every correct

processp delivers M at most once, and if sendéf) is correct
then M was previously broadcast by sendéj(

Proof. The proof of the first assertion is trivia from the
inspection of the algorithm, assuming the properties of hash
functions. The proof of the second assertion follows directly
from the properties of the communication channels. O

THEOREM 14. (Total order). If two correct processes deliver

two messageaf; and M» then both processes deliver the two

messages in the same order.

Proof. Any correct process delivers messages only after an
execution of Vect or _Consensus (line 9). All correct
processes execute the same instances of the vector consensus
protocol, identified by aid = 0, 1, 2, ... The messages which
aredelivered areall thosewith at least f + 1 hashesin the vector
returned by Vect or _Consensus and the order of delivery
is deterministic (line 12). Therefore, all processes deliver the
same messages in the same order. O

6. MULTI-VALUED CONSENSUSAND ATOMIC
BROADCAST EQUIVALENCE

The equivalence between crash-tolerant multi-valued consen-
sus and atomic broadcast has been proved in [18, 30]. The
equivalence for environments prone to Byzantine faults with
signatures has been proved in [31]. Here we prove a similar
result but without the requirement of signatures. This result
has been previously stated but never proved [18, 30].

We follow an approach similar to [18, 30], i.e. we provide
a transformation from multi-valued consensus (as defined in
Section 3) to atomic broadcast and atransformation from atomic
broadcast to multi-valued consensus. The first transformation
was, in fact, presented in two stepsin Sections4 and 5. The
transformation from atomic broadcast to consensusis presented
in Algorithm 4. The transformations are independent of the
technique used to circumvent FLP.

Theprotocol issimilar to thefirst part of Algorithm 1 sothere
is no need to describe its behavior. The protocoal is correct if
it satisfies the properties MV CL1 through MVC5 provided in
Section 3.

THEOREM 15. (Validity 1). If all correct processes propose
the same valuey, then any correct process that decides,
decidesv.

THEOREM 12. (Agreement). If a correct process delivers a
message M, then all correct processes eventually deliver M.

THE COMPUTER JOURNAL VOL. 49 No. 1, 2006




FrOM CONSENSUS TO ATOMIC BROADCAST 91

ALGORITHM 4. Transformation from atomic broadcast to
multi-valued consensus (for process p;).

ALGORITHM 5. Transformation from vector consensus to
multi-valued consensus (for process p;).

Function M_V_Consensus_AB (v;, cid)

1: INIT_delivered; < ; {INIT messages delivered}

2. A Broadcast ((INIT,v;,cid,i)); {atomic broadcast}

3. wait until (at least (n — f) INIT messages from different
senders have been atomically delivered);

4: Vo if ((INIT, v;, cid, j) has been delivered) then V,[j]
<V dseVi[j] < L1;

5 if (3, : #,(Vi) = (n — 2f)) then

6. returnv;

7. ese

8 return _L;

Proof. If al correct processes propose the same value v, then
all processes deliver at least (n — 2f) INIT messageswith v in
line 3 since at most f processes can broadcast messages with
different values. It followsimmediately from lines 5 and 6 that
any correct process that decides, decides v. O

THEOREM 16. (Validity 2). If a correct process decidasg
thenv was proposed by some processce L.

Proof. The proof is obtained from a trivial inspection of the
protocol. O

THEOREM 17. (Vdidity 3). If a valuev is proposed only

Function M_V_Consensus_VC(v;, cid)

1. V; < Vect or _Consensus (v;, cid);
2 if (3, : #,(Vi) = (n — 2f)) then

3 returnv;

4 ese

5  return L;

problem cannot be solved deterministically in asynchronous
systems. The protocol shown in this paper circumvents this
result using randomization, i.e. by not being deterministic.

7. MULTI-VALUED CONSENSUSAND VECTOR
CONSENSUS EQUIVALENCE

Vector consensus is apparently a stronger problem than
consensus.  Doudou and Schiper proved that a flavor
of multi-valued consensus defined in terms of properties
MVCLUMVC4/MVCS is reducible to vector consensus [20].
Here we prove that a multi-valued consensus defined by
properties MVC1-MVCS5 is equivalent to vector consensus.
The transformation from multi-valued consensus to vector
consensus was given in Section 4. The reverse transformation
isshown in Algorithm 5. We skip the correctness proof of this
transformation given its simplicity. The two transformations

by corrupt processes, then no correct process that decides,together prove the equivalence of the two problems.

decidewv.

Proof. Foracorrect processtodecidev (line6), atleast (n—2f)
processes must have broadcast that value. There can be at most
f < (n — 2f) corrupt processes So No Correct processes can
decide a value proposed only by those processes. O

THEOREM 18. (Agreement).
decide differently.

Proof. The atomic broadcast protocol guarantees that all
correct processes deliver the INIT messages in the same order.
Therefore, all correct processesdeliver thesame NI T messages
in line 3 and decide the samein lines 5-8. O

THEOREM 19. (Termination).
eventually decides.

Proof. The proof is trivial taking into account that the atomic
broadcast protocol terminates (properties AB1 and AB2) and
that there are at least (n — f) correct processes. O

The proof that Algorithm 4 satisfies the definition of multi-
valued consensus concludes the demonstration that atomic
broadcast and multi-valued consensus are equivalent. An
immediate consequence is that the FLP impossibility result
also applies to Byzantine-resilient atomic broadcast, i.e. this

No two correct processes

Every correct process

8. PERFORMANCE EVALUATION

Multi-valued consensusThe time complexity of the multi-
val ued consensus protocol istwicethe number of asynchronous
roundsexecuted by the reliable broadcast protocol L, (lines
3 and 10) plus the time complexity of the binary consensus
protocol Ly (line 17). The reliable broadcast protocol by
Bracharunsin exactly threerounds[9]. Thetime complexity of
the binary consensus protocol is measured in expected number
of asynchronous roundssince the protocol is randomized,
therefore probabilistic. The binary consensus protocol in
Appendix A has constant expected time complexity O (1),
or, more precisely, Lpc = 20. The protocol by Canetti and
Rabin has also constant expected time but has a high message
complexity so we do not consider it here [10].6 Therefore, the
time complexity of the multi-valued consensus protocol is (we
use capital L for expected number of asynchronous rounds):

Loy = 2Lrb + Lipc = 26 = 0(1) (1)

The protocol can be optimized by replacing the second
reliable broadcast in line 10 by a (normal) broadcast or by the

8The bi nary consensus protocol by Bracha has also an expected number of
roundsof O(1) if f = O(/n), but 02" otherwise[9].
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transmission of theVECT messageindividually toall processes.
In this case, one correct process might receive (n — 2f)
messages with the value to be decided v, while another correct
process would not. To circumvent this problem, all correct
processesthat receive (n — 2 1) messageswith thevaluev (line
11) have to resend these messages to all other processes. This
optimization reduces the three rounds of the reliable broadcast
protocol to two rounds.

Table 1 presents both the expected time complexity of the
protocol (Lmyc) and thetime complexity in the best case (Imyc).
The best case for the multi-valued consensus protocol is when
the binary consensus runs in lpc = 10 rounds instead of the
expected Ly = 20 rounds (see Appendix A). Notice that the
reliablebroadcast runsin aconstant number of rounds, therefore
Itp=Lyp = 3.

Message complexities differ if the communication is point-
to-pointor broadcast If the communication is point-to-point,
the message compl exity of Bracha' sreliablebroadcastis My, =
2n? + n and the expected message complexity of the binary
consensus in the appendix is Mpe = 1203 + 8n2. If the
messages are broadcast, these complexities are respectively:
M), = 2n + 1and M{ = 12n? + 8. The expected message
complexity of our multi-valued consensus corresponds to 2n
executions of the reliable broadcast plus one binary consensus
(Table 2):

Mo = 2nMjy, + M{. = 16n° 4+ 10n = O (n?) (3)

These complexities can be reduced by merging or piggy-
backing some messages in others.

Vector consensusThe vector consensus protocol runs in the
best case in one round, in the worst in f + 1 rounds (e.g.
if n = 4, f = 1, the protocol terminates in one or two
rounds). In the best case the loop in lines 3-8 will be executed
only once so the time complexity will be the sum of those of
the reliable broadcast (line 2) and the multi-valued consensus
(line 6). If the protocol does not terminate in the end of
the first round, it is reasonable to expect that all VC_INIT
messages reliably broadcast will be delivered during the first
executionof M_V_Consensus, sincethisconsensusinvolves
severa rounds of message exchange (two reliable broadcasts
plus one binary consensus). This would make the protocol
terminate in the second round. However, if we make the
(pessimistic) assumption that the malicious processes control
the communication, then they can schedule the messages in
such away that they delay the protocol amaximum of f rounds.
Therefore, the expected time complexity of the algorithm

isO(f):

Lye=Lip+ (f + DLy = O(f) 4)

The best case is the execution of a single multi-valued
consensus with an execution of the best case of the binary
CONSensus:

lve =Ip + lmve = 19 (5)

The expected message complexities correspond to n
executions of the reliable broadcast plus f + 1 multi-valued
CONSENSUSES:

Mye = nMyp + (f + 1) Mywe = 18n° + 11n% + 16n° f

+100° f = O(fn?) 6)
M = nMjg+ (f + DMy = 180 + 11n + 16n°
+10nf = O(fn? W)

Atomic broadcast. The time complexity of the atomic
broadcast protocol is equivalent to one reliable broadcast (line
5) plus one vector consensus (line 9); therefore the expected
number of roundsis O (f) per message:

Lap = Lip+ Lyc = O(f) (8)

Thebest time complexity isonereliable broadcast plus abest
case execution of the vector consensus:

lap = lip + lye = 22 )

The expected message complexities depends on the amount
of messages being transmitted. If only occasional messagesare
sent, the expected message complexities are respectively with
point-to-point and broadcast communication:

May = Myp + Myc = 18n° + 13n% +n + 16n°f

+10n%f = O(fn®) (10)
My, = M), + M{c = 18n% + 13n + 1+ 160 f
+10nf = O(fn? (11)

However, if messages go on arriving during a certain
execution of the vector consensus protocol, in the next round
task T1 will try to make agreement on several messagesinstead
of only one. Therefore this protocol exhibits the virtuous
characteristic that its number of messages decline considerably
if the rate of transmissionsincreases.

Tables 1 and 2 summarize the results for al protocols.

9. RELATED WORK

The FLP impossibility result implies that any consensus
protocol in a strictly asynchronous environment has to be
randomized. Most randomized consensus protocols presented
in the literature are binary. An exception is the multi-
valued crash-tolerant protocol in [38]. Also for crash failures,
there is one transformation from binary to multi-valued
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TABLE 1. Time complexities of the three protocols (asynchronous rounds).

Protocol

Best time complexity

Expected time complexity

Multi-valued consensus
Vector consensus
Atomic broadcast

Imve =2hp+1lpc =16 Lmyc=2Lip+ Lpc =26= 0(1)
Ive = Ip + Imve = 19
lap = lrp + lvec = 22

Lyc = Lyp+ (f + DLmvec = O(f)
Lay= L+ Lve = O(f)

TABLE 2. Message complexities of the three protocols (messages).

Expected message complexity
(point-to-point)

Protocol

Expected message complexity
(broadcast)

Multi-valued consensus
Vector consensus
Atomic broadcast

Mmmve = 2nMip + Mg = O(n3)
Myc = nMgp + (f + ))Mmyec = O(fn®)
Mg = Myp + Myc = O(f”3)

Mine = 2nM)) + M} = O (n?)
M = nM), + (f + DM,c = O(fn?)
My = M + My = O(fn?)

consensus available [39]. Turpin and Coan presented a
transformation from binary to multi-valued consensus for
Byzantine synchronous systems [40]. Toueg presented a
transformation for asynchronous systems [12]. The main
difference of this transformation to Algorithm 1 is that Toueg
uses signatures; therefore its algorithm does not require a
reliable broadcast primitive but a weaker echo broadcast
protocol. His protocol has optimal resilience, time complexity
0O (1), and lower message complexity than ours, but needs
asymmetric cryptography. Cachin et al. [31] proposed a
similar transformation, but the algorithm is based on voting
the selection of the value proposed by each successive process.
The protocol has optimal resilience, time complexity O (1) and
lower message complexity but uses public-key signatures and
threshold cryptography. Several non-randomized, Byzantine-
resilient, asynchronous multi-valued consensus protocols have
been proposed in the literature [15, 21, 22, 34, 35]. Lower
bounds on the number of rounds necessary for (Byzantine)
consensus and atomic broadcast have been defined in [41].

Interactive consistency was defined as the problem of
agreeing on a vector with one value per correct process [1].
However, in asynchronous systems it is not possible to
differentiate slow from crashed processes, and with aByzantine
fault model it might also be impossible to distinguish
malicious from crashed processes. Therefore, for Byzantine
asynchronous systems the vector consensus problem was
defined [20]. Two vector consensus protocols based on
faillure detectors and one based in wormholes have been
specified [20, 21, 26]. Recently, Ben-Or and El-Yaniv
presented arandomized vector consensus protocol with optimal
resilience, time complexity O(1) and no signatures [32].
However, the message complexity is considerably higher than
ours, sincethe protocol runsn multi-valued consensusprotocols
inparallel, whileoursruns, intheworst case,n — (2f +1)+1
multi-valued consensuses.

For the crash fault model, some transformations from
multi-valued consensus to atomic broadcast have been defined
[18, 30, 36]. Cachin et al. [31] defined a transformation from

multi-val ued consensusto atomic broadcast for Byzantinefaults
with signatures. Doudou et al. [22] presented a transformation
closer to ours. It also uses signatures and it can have a higher
communication complexity since it gives the full messages to
the consensus module, instead of hashes, which are generally
smaller. Doudou and Schiper briefly discuss a reduction of
atomic broadcast to vector consensus [20].

A collection of randomized atomic broadcast protocols
can be found in [42]. These protocols rely on signatures
to guarantee the authenticity of the messages and do not
have optimal resilience. Other Byzantine-resistant atomic
broadcasts for asynchronous systems can be found in
Rampart [19] that uses signatures and SecureRing [43] that
uses a signed token. BFT [6] does not use signatures when
there are no faults; therefore it is very efficient. Unlike
ours, al these three protocols need a failure detector to put
away corrupt processes. Apart from the added complexity,
the design of Byzantine failure detectors that are complete
is still an open research issue. Défago et al. [44] present
an interesting classification of atomic broadcast protocols.
In terms of that classification, our protocol is a destination
agreementlgorithm, i.e. processes receive messages without
ordering information and run agreements to order them.

10. CONCLUSION

This paper proposes a stack of intrusion-tolerant or Byzantine-
resistant protocols. These protocols form a coherent
family, sharing effective and efficient structural properties:
signature freedom, full asynchrony, decentralization and
optimal resilience.

The stack shows a series of protocol transformations: from
binary consensusto multi-valued consensus, from multi-valued
consensus to vector consensus and from vector consensus to
atomic broadcast. The objective isto provide a modular set of
protocols that adesigner can use in practicein the construction
of intrusion-tolerant systems, especially in systems with
limited resources like embedded environments. Therefore, the
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protocols evade a set of characteristics that might constitute a
shortcoming in areal system: the use of public-key signatures,
aknown performance bottleneck in intrusion-tolerant systems,
time assumptions, often vulnerable to some attacks and the
existence of leaders whose failure might be costly to detect.

Themulti-valued consensus protocol terminatesin aconstant
expected number of rounds. However, due to the severe nature
of malicious faults, vector consensus is more effective as a
system building block for security-related applications. The
time complexity of the vector consensus proposed is O(f).
The time complexity of the atomic broadcast protocol is also
O(f) (per message), athough the average number of rounds
can be considerably lower if there are several messages being
transmitted. Both thetime complexitiesof the vector consensus
and atomic broadcast protocols are reduced to O (1) when all
processes are correct. These results ook very promising.

Besides presenting the stack of protocols, the paper also
proves the equivalence between multi-valued consensus and
atomic broadcast in the Byzantine failure model without
signatures. A similar proof isgiven for the equival ence between
multi-valued consensus and vector consensus.
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A. A BINARY CONSENSUS PROTOCOL

Thisappendix presentsaBinary consensus protocol compatible
with the properties we stated in Section 1. it does not
use signatures; it is asynchronous (uses randomization to
circumvent FLP); decisions are taken in a decentralized way
during the normal operation; it has optimal resilience, f =
l(m — 1)/3|. Moreover, its time complexity is O(1). The
protocol isaversion of Bracha's protocol in [9] enhanced with
the dual-threshold coin-tossing scherbg Cachin et al. [14].
The protocol does not avoid public-key cryptography entirely
since the coin-tossing scheme is based on the Diffie-Hellman
problem.

The (n,k,f) dual-threshold coin-tossing schemssumes n
processes, at most f of which can be corrupt. The processes
hold shares of a functio® mapping acoin name C to itsvalue
F(C) € {0,1}. The main property of the scheme is that to
construct the value of acoin, aprocessneedsk coin sharegrom
different processes, witht < k < n — f. Herewe consider the
specificcaseof k =n — f.

The scheme assumes a trusted dealerthat generates secret
keysSK1, ..., SK, and verificationkeysVK, VK1, ..., VK,.
The dealer gives every process p; a secret key SK; and all
verification keys. A process uses SK; to produce coin shares
and the verification keys to construct the values of coins. The
existence of the dealer does not collide with the protocol being
decentralized (in the sense above), because the dealer has no
role during the execution of the protocol.

The modification of Bracha's protocol is smple. Lets us
defineacoin name C asaunigque combination of the consensus
execution identifier beid and the round number r, eg. C =
bcid + 1/r. In Step 3, the protocol may have to set avariable
i, to 1 or O with probability 1/2[9]. The modification isto use
thedual-threshol d coin-tossing schemeto giveidentical random
numbersto all correct processes, i.e. coinswith name C. More
precisely, the line of Bracha's protocol that setsi, to 1 or O is
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substituted by Step 4 of the ABBA protocol [14]. After that
step, i, isset to the value of coin C.

This protocol avoids the use of digital signatures and
threshold signaturesof the original protocol in[14] at the cost of
additional rounds of message exchange. However, the expected
time complexity is still O (1), or more precisely (considering
thereliable broadcast in [9]):

Lic = 6Lp +2 =20 (12)

In the best case the protocol runsin a single round:
lpe =3lp+2=10 (13)

The expected message complexities are Mpe = 1213+
812 = O(n®) with point-to-point communication or Mj,, =
12n2 4+ 81 = O (n?) with broadcast communication. However,
several messages of the executed reliable broadcast might be
merged or piggy-backed, thus reducing these numbers.
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